OXFORD

B W ’ ke
CRs(CENTRE FOR THE STUDY OF UHIVERSITY OF
1 of AFRICAN ECONOMIES

HOW TO MERGE DATASETS USING THE MATCHIT ROUTINE

Suppose you set out to conduct your study; this time a randomised experiment with two waves of data
collection, baseline and endline. However, you face a common data challenge where the unique
identifiers in the baseline are erroneously missing or wrongly captured such that no successful
merging is possible. Luckily, you had the names of your subjects captured in two variables as
“surname” and “firstname”.

Here is a go-around to get your data merged using the “Matchit” routine’.

1. Datasets
There are two datasets to merge: baseline and endline.
Each dataset has the subject names under “surname” and “firstname” variables. The names are also
irregularly entered. That is, in the baseline data, a given surname is different from the one entered in
the endline. The ‘supposed’ unique identifier “pid” does not uniquely identify the observations either.

2. The Matchit routine

a. You will need first to concatenate the two names to create on variable such that, if the surname
is John and the first name is Doe, the new variable has JohnDoe.

*baseline

use baseline, clear

egen namesite = concat (firstname surname)
*endline

use endline, clear

egen namesite = concat (firstname surname)

b. With irregular pids in both datasets, you are set to attempt a fuzzy merge. This routine tries to
match text and then generate a similarity score such that 0 < similscore < 1. A similarity score
of 1 implies a perfect match between texts found in both the datasets. We can proceed as
follows.

*Matchit routine
use baseline, clear
matchit pid namesite using endline.dta , idu(pid) txtu(namesite)

" Julio Raffo, 2015. “MATCHIT: Stata module to match two datasets based on similar text patterns,” Statistical Software
Components s457992, Boston College Department of Economics, revised 20 May 2020.

c. You can now get a sub-dataset of perfect matches (similscore == 1) and save that as a
separate dataset. Note that all this code has done is create a similarity score variable based on
the imperfect pid and namesite variables, then patched the two variables into your master
dataset (baseline).

If you just wanted to get a final dataset of perfect matchesonly (i.e. similscore == 1),
all you need to do is to drop all other observations with similscore<1.

*Now keep Exact score (similscore == 1) as separate dataset

gsort —-similscore // here we arrange the similscores in descending order

drop if pid == pid[n] & similscore != 1 // note that we want to remain with

observations that uniquely matched and with a similarity score of 1.
save exactmatch baseline, replace

d. Next, we merge the bridge set of exact matches back to the baseline file.

merge 1:1 pid namesite using baseline
drop merge
save baseline 1, replace

e. We have to repeat the same process for the endline data.
*Repeating with the endline data

use endline, clear

matchit pid namesite using baseline.dta , idu(pid) txtu(namesite)
gsort —-similscore

drop if pid == pid[n] & similscore !=1

save exactmatch endline, replace

merge 1:1 pid namesite using endline
drop merge
save endline 1, replace

f. The last step is to now merge the two sets of perfect matches (baseline_1 and endline_1)

use baseline 1, clear

keep if similscore ==

gsort namesite

save baseline final, replace

use endline 1, clear

keep if similscore ==

gsort namesitel

save endline final.dta, replace

merge 1:1 namesite using baseline final
drop merge

save final data, replace

The most interesting part is that the matchit algorithm gives you scores of matches that are less than
1. Indeed, a normal merge could give you the final data achieved above. Instead, one can first
eliminate the observations that match 100% in both datasets thereby remaining with datasets that do
not match perfectly. Here, you can choose what levels of match are more sensible to try given that each
observation in the master dataset is essentially iterated through every observation in the using dataset
to generate a match. That means, one observation can have several matches even though the largest
score is essentially more plausible as a good match. To fix the match at some probability score, assume
you want matches that are greater than or equal to 0.7 in similarity scores. The code to attain this is;

matchit pid namesite using endline 70.dta , idu(pid) txtu(namesite) t(.7)

The final step will be a simple append routine to get a composite project data with the bits of data tied
back together. A downside is that you will end up generating quite a number of sub data files depending
on the match levels you iterate.

Note that Matchit is a routine that can be deployed for a number of data consolidation and cleaning
tasks. It is worth checking some more of what Matchit can do here:
https://www.stata.com/meeting/switzerland16/slides/raffo-switzerland16.pdf.

Some of the highlights are that with cleaner datasets, you can use Matchit's powerful inbuilt weights
option to penalize some of the text that is more frequent by giving lower scores. Text that is less
frequent is then given higher scores meaning that the routine is guided to produce better similarity
accuracies. Another useful option that accords faster computational speed (particularly in large
datasets) removes redundant information and reduces the size and depth of index. This option works
optimally if you have spent some time to clean the variables of interest as much as you can.

George Kinyanjui, Doctoral Fellow, University of Cape Town
geejoekaris@gmail.com | knygeo002@myuct.ac.za
04 February 2021

https://www.stata.com/meeting/switzerland16/slides/raffo-switzerland16.pdf

