
  
R Shiny Apps allow authors to write small self contained applications to better display results/data in an 
interactive manner or to allow skeptical readers to perform live robustness tests.  
 
Here is an example of what a finished App could look like. Click on the March-June Pillar 1 Synthetic 
Controls tab to perform your own live robustness analysis for this recent paper looking at the impact of 
Track and Trace on Covid-19 spread on the Isle of Wight. 
 
Creating your own App  
 
I will use the default Shiny App example to illustrate its features. You can follow along by simply selecting 
File - New File - Shiny Web App in R-studio. First, we will load the library. 
 

l i b r a r y ( s hi n y ) 

 
Every Shiny App has three components- the UI (user interface), the server, and the one that calls the 
application. The UI determines the front end of your app i.e. how it looks and feels to the user. In this 
case, it’ll contain two tabs- one that displays a histogram, and the other that will just contain a piece of 
text. 
 

# Define UI for application that draws a histogram and another which   
# has some simple text. In the first tab, I include a sidebar with a slider  
# allowing the user to change the number of bins in a histogram and then  
# plot the histogram next to it.  
 
ui <- fluidPage( 
    tabsetPanel( 
      
    tabPanel("Old Faithful Geyser Data",   
    # Application title 
   
    # Sidebar with a slider input for number of bins  
    sidebarLayout( 
        sidebarPanel( 
           sliderInput("bins", 
                       "Number of bins:", 
                       min = 1, 
                       max = 50, 
                       value = 30) 
        ), 
         
        # Show a plot of the generated distribution 
        mainPanel( 

                 
 

CREATING INTERACTIVE SHINY APS IN R 

 
 
 

 
 
 

https://shiny.rstudio.com/?version=1.1.456&mode=desktop
https://bdi-pathogens.shinyapps.io/LocalCovidTracker/
https://www.thelancet.com/journals/landig/article/PIIS2589-7500(20)30241-7/fulltext


   

1 
 

            plotOutput("distPlot") 
        ) 
     ) 
  ), 
tabPanel("Another Tab", 
        textOutput("text1") 
  ) # end "About" tab 
  ) # end tabsetPanel 
) 

 

The second component (i.e. the server ) draws the dynamic items from user inputs. This section is a 
little more heavy on the R code. We take bins from the user input and define some plot object distPlot 
to pass back to the UI. 
 

# Define server logic required to draw a histogram 
server <- function(input, output) { 
    
   output$distPlot <- renderPlot({ 
      # generate bins based on input$bins from ui.R 
      x    <- faithful[, 2]  
      bins <- seq(min(x), max(x), length.out = input$bins + 1) 
       
      # draw the histogram with the specified number of bins 
      hist(x, breaks = bins, col = 'darkgray', border = 'white') 
   }) 
    
    # now make the text output 
    output$text1 <- renderText({ 
        "This is another tab, SO exciting!" 
    }) 
} 

 
Finally, we can run the application by combining the front end and back end together. 
 

# Run the application  
shinyApp(ui = ui, server = server) 

 
The finished app looks like this: 
                     
 



   

2 
 

 

                       

                                        
 

Once you’ve created your own Shiny App, you can publish it using shineyapps.io or another method 
described here. 
 
 
 
 

 
 
 

 Luke Milsom, DPhil Candidate in Economics, Oxford 

19 November 2020 
 
 
 
 

https://www.shinyapps.io/?_ga=2.258482890.1566849366.1605525353-191298202.1599127089
https://www.csae.ox.ac.uk/dphil-students/luke-milsom

