OXFORD

, ¥ E )
C ' CENTRE FOR THE STUDY OF UHIVERS
1 of AFRICAN ECONOMIES

PARALLELISING MATLAB CODE TO IMPROVE SPEED

Parallelising splits the operations contained within a piece of code and sends it to multiple processors
in your computer. This should speed up computation time as multiple processors execute the code
simultaneously. Writing parallelisable code is especially helpful when working with computationally
intensive problems.

In this post, | will focus on transforming a for loop to a parfor loop in MATLAB. The parfor loop will
execute all the statements contained in the loop body in parallel, unlike in the for loop where each
iteration must wait its turn. Parfor is contained in the Parallel Computing Toolbox. As an example, | will
show how parallelising code can be useful if we wish to solve a cost minimisation for several firms and
aim to improve the speed of computation. See Fernandez-Villaverde and Valencia (2018) for other
applications of parallel computing to economics, such as value function iteration.

Before getting into the specifics, it is helpful to understand what is happening behind the scenes when
a parfor loop is executed. This process can be split into three steps.

1. First, the MATLAB client (i.e. the MATLAB interface where the code is written up) issues the
parfor command and oversees the MATLAB workers in the parallel pool. MATLAB workers run in
the background and follow the commands issued by the MATLAB client, executing the loops in
parallel.

2. Second, the data needed for the workers is sent and the computations are executed.

3. Third, these results are then sent back to the MATLAB client and assembled.

Parfor is best used in computationally demanding problems as the communication between the client
and workers, plus the reassembly of the data all takes time. Therefore, you must be sure this parallel
overhead is time saving for your problem, which it may not always be if the for loop is only needed for
a computationally simple task.

Each cycle through a parfor loop is termed an iteration. It's important to note that MATLAB workers do
not evaluate iterations in a particular order. Therefore, each iteration in a parfor loop must be
independent and self-contained.

How to set up parfor loop

This worked example will feature a cost minimisation problem including ten firms, indexed by j in the
loop, each of which will employ ten intermediate inputs and labour to be used in its production. Each
firm will solve its cost minimisation problem, minimising its cost function subject to its production
function.

For more background on setting up a constrained optimisation problem in MATLAB and solving it using
fmincon, please see my previous Coders’ Corner post How to Solve Constrained Optimisation Problems
in MATLAB.



https://csae.web.ox.ac.uk/sites/default/files/csae/documents/media/coderscorner_tt21week9fm.pdf
https://csae.web.ox.ac.uk/sites/default/files/csae/documents/media/coderscorner_tt21week9fm.pdf

Before running the parfor loop, | create a matrix and vector in which the results will be saved. X_quant
is the quantity of each intermediate input and the quantity of labour that will be employed by the firm
to minimise its cost. Fval_quant will be the associated minimum cost. Each firm’s results will be
displayed in the corresponding row.

Xx_quant = nan(n,n+1);
fval_quant = nan(n,1);

At the start of the parfor loop | create a temporary matrix/vector. The dimensions of the matrix must
be consistent with the dimensions of the results for a single firm, not all the firms through which
we'll be looping. By construction, a firm will minimise its costs of employing ten intermediate inputs
and labour subject to its production function. Temp_x_quant will be a row vector of length 11 (the
ten intermediate inputs plus labour), and temp_fval_quant, a scalar of the associated cost of
production. Both must be pre-allocated in order for parfor to run without error.

These temporary vectors are necessary for us to transfer these results of interest to a storage matrix
that will exist in the MATLAB workspace after the parfor loop is executed. You'll notice when we run
the code, temp_x_quant and temp_fval_quant, will not appear in the MATLAB workspace.

parfor j = 1:n

temp_x_quant = nan(1,n+1)
temp_fval_quant = nan(1,1);

The remaining body of the parfor loop then executes the firms’ cost minimisation problem. Please
review the aforementioned pdf file for a detailed explanation of the code written for cost
minimisation. Costfun is a function that assembles the firm’s linear cost function, and prodfun is the
constraint.

The results from fmincon are stored in the temporary matrices | created.

objective = @(par) costfun(par,p,w,n);
constraint = @(par) prodfun(par,a_vec,alpha_m,q,j,n);

%solve

lbtmp = zeros(1,1); % min intermediate input quantities
lmin = @.0001; % min labour quantity, essential input
b = [lbtmp, lmin];

ubtmp = repmat(1000,1,1)'; % max int input quantities
lmax = 1000; % max labour quantity

ub = [ubtmp, lmax];

% no linear constraints so set those arguments to []
A= [1;

b =1[];
Aeq = [I;
beq = [1;

——

% choose initial starting point satisfying constraints

% optimal input choice order of matrix: [x1, x2, X3, ..., l]

X0 = repmat(0.001,n+1,1)"';

options = optimset('display','iter', 'PlotFcn', {@optimplotfval}, 'MaxFunEvals', 10000);

[temp_x_quant(1,1:n+1), temp_fval_quant(1,1)] = fmincon(objective,x®,A,b,Aeq,beq, lb,ub,constraint,options);



We must transfer the results stored in the temporary vectors to the storage matrix created before
the parfor loop so that we can access the results in the workspace. Each firm’s results will enter as a
different row in the x_quant and fval_quant matrices.

x_quant(j,:) = temp_x_quant;
fval_quant(j,1) = temp_fval_quant;
end

For this problem, using a for loop takes MATLAB 56 seconds to execute the code on my computer,
while the parfor loop takes 50 seconds. Saving 6 seconds can be very useful, especially if this parfor
loop is contained within another for loop that may have many iterations itself. The time savings can
be much more substantial for more computationally demanding problems, especially if the problem
in the loop is more time-consuming.

Note that you cannot nest a parfor loop in another parfor loop. Therefore, you should parallelise
your most computationally intensive forloop to see the most gains.

While tinkering with parallelising your code, you cannot break out of a parfor loop early, e.g. using
commands such as keyboard to check your code. It's best to write the code consistent with
parallelisation, and check a few lines with a for loop before running it. Once you want to check

whether it is fully operational as parallelised code, replace the for loop with a parfor loop and
iterate until there is no error.

References

Fernandez-Villaverde, ). and Valencia, D.Z., 2018. A practical guide to parallelization in economics (No.
w24561). National Bureau of Economic Research.

Diana Beltekian, PhD Candidate in Economics, University of Nottingham

23 November 2021



